CA/MCAの数理 (その 2)

津田塾大学 数学・計算機科学研究所 藤本一男 kazuo.fujimoto2007@gmail.com

履歴

- ・2025/09/04 計量分析セミナー2025夏用に改訂
- ・2023/09/06 計量分析セミナー2023夏用に作成

CA/MCAのリザルトを解釈するために

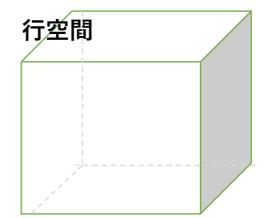
- ・生成される二つの空間
- ・分解される分散と座標軸
- ・SVDの結果から得られる行ポイント、列ポイントの座標軸
 - ・主座標と標準座標
- ・各ポイントの座標軸への寄与率(絶対的寄与率、 contribution)
- ・各ポイントと座標軸の相関。cos²

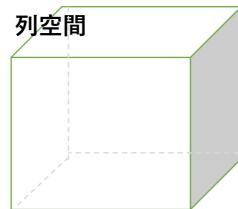
分析手順

- ・分析対象のデータを前処理
 - ・度数分布表など、通常のデータの前処理を行う。
 - ・NAを"NA"など文字列に変換
 - CAやMCAのfunctionが求めている属性に変換
 - table、data.frame
 - factor
- CA/MCAを行う
- 慣性率を確認する。固有値の棒グラフ
- ・行マップ、列マップを描き、座標軸を解釈する
 - ・ここが最初の関門

CA は 行空間と列空間を生成する

	col1	•••	coln	rowS um
rowl				
:				
rown				
colSum				





m x n 行列

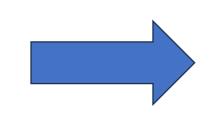
空間生成とは、座標軸の生成 を意味する dim] ···. dimn.

> これらの座標軸は、データ 表の慣性(分散)が空間生成 に用いられた変数が分解され たもの。

> これらの慣性(分散)は、 行空間と列空間で同じ 値となる。(ここに、行分析 と列分析の相互浸透があらわ れている。cf カイ2乗距離を もちいているため。主成分 分析PCAでは、それはできな い。)

CA**の三つの**result

	強盗	詐欺	破壊	行和
オスロ				
中部				
北部				
列和				



固有値 λ	Dim1	Dim 2
λ		

行座標 F	Dim1	Dim2
オスロ		
中部		
北部		

列座標 G	Dim1	Dim2
強盗		
詐欺		
破壊		

集計データ

回答者	変数1	変数 2	•••	変数n
1				
2				
3				
:				
n				

多重対応分析 MCAによる 空間生成 Active変数

選択肢回答変数

Active変 数 Pas sive 変数

生成された座標軸

回答者	分散率	累積分散率	修正分散率	累積修正分散率
Dim.1				
Dim.2		割包	_	
Dim.3		吉J c	=	
:				
Dim.n				

個体空間座標值

回答者	Dim.1	Dim.2 ···.		Dim.n
1				
2		□□ +==	. 	
3		—— <mark>座標</mark>	世	
:				
n				

変数空間座標値

変数	Dim.1	Dim.2	•••	Dim.n
変数1				
変数2				
変数3		<mark>座標</mark> [す	
:		<u> </u>	<u> </u>	
変数n				

射影される変数座標値

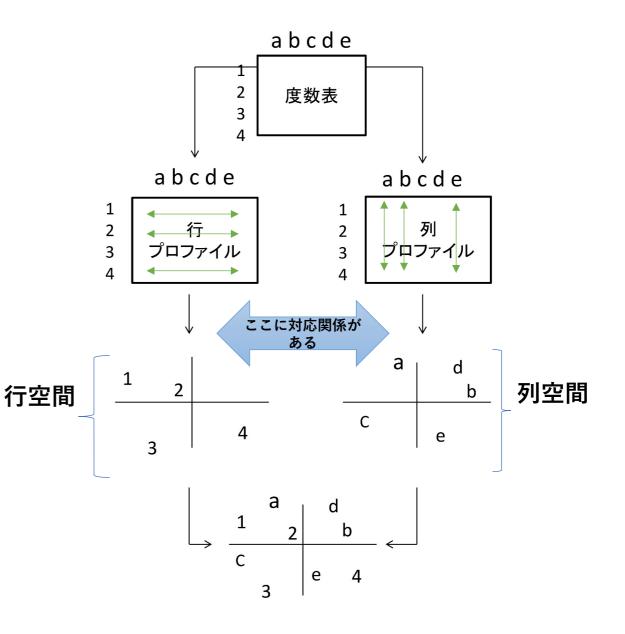
Passive変数	Dim.1	Dim.2 ···.		Dim.n
1				
2		座標值	直	

主座標と標準座標

二つの空間と座標系

- 、二つの空間の重ね合わせ
- これは、それぞれのグラフを見てもらうのがよい。
- 数理的に追いたい人は、『対応分析の理論と実践』を 読んでください。

マップ	行ポイント の座標	列ポイント の座標	option
対称マップ	主座標	主座標	Symmetric
	主座標	標準座標	rowprinci pal
	標準座標	主座標	colprintci pal
不可能!	標準座標	標準座標	X



『対応分析入門』p6、図1.2に加 筆

追加変数による空間解釈

行と列の関係

- ・各行ポイントは、列ポイント全てと結びついている。
- 各列ポイントは、行ポイント全てと結びついている。
- ・その関係は、transition formura(遷移公式、推移公式)として以下のようにかける。『対応分析の理論と実践』p246
 - F (行主座標) = D_r-¹PΓ (Pは元表、Γは列標準座標)
 - ・G(列主座標) $= D_c^{-1}P^T\Phi$ (P^T は元表の転置。 Φ は行標準座標)
- ・標準座標は、平均O分散1にスケーリングされています(標準化)。

追加変数(サプリメンタリ・ポイント)

- ・元表の行和、列和は、各行、各列の質量(weight)と呼ばれる。 ・この質量がある行や列が、行空間、列空間を生成する。
- ・ところで、行ポイント、列ポイントは、遷移公式によって結びついている。
 - 例:
 - ・ MCAで変数空間で選択されたカテゴリの組み合わせによって、個体空間での個体の「位置」が 決まります。
- そこで、質量をもたないプロファイルを考えると、そのプロファイルは、 反対側の空間に座標をもつことができる。
- こうして、空間生成には寄与せずに、内部構造を分析するための変数を考えることができる。
 - 例えば:
 - 空間生成には、性別、年齢変数は用いずに、追加変数として生成された空間にplotする。
 - MCAでの構造化データ解析はこの仕組みを活用します。

CAの入力表と二つのプロファイル

0.56 0.15 0.29

行分析 行プロファイル

	強盗	詐欺	破壊	行和	
オスロ	395	245 6	175 8	4609	
中部	147	153	916	1216	
北部	694	327	134 7	2368	
列和	123 6	293 6	402 1	8列分析 列プロ	f コファイル

このクロス表の変数、ノルウェイの都市名と 犯罪名は、Clausen1987=2015で使われて い

	強盗	詐欺	破壊	行和
オスロ	0.09	0.53	0.38	1
中部	0.12	0.13	0.75	1
北部	0.29	0.14	0.57	1
平均行比率	0.15	0.36	0.49	1

	オスロ	中部	北部	列和
強盗	0.32	0.12	0.56	1
詐欺	0.84	0.05	0.11	1
破壊	0.44	0.23	0.33	1
平均列比率	0.56	0.15	0.29	1

*元表を転置して配置していある

る事例のもの。

CAの入力表と二つのプロファイル

	強盗	詐欺	破壊	行和
オスロ	0.09	0.53	0.38	1
中部	0.12	0.13	0.75	1
北部	0.29	0.14	0.57	1
平均行プロ	0.15	0.36	0.49	1
ファイル				

行比率として要素計算したものが、 行プロファイル。 列和の行は、平均行プロファイルとなる。

	オスロ	中部	北部	列和
強盗	0.32	0.12	0.56	1
詐欺	0.84	0.05	0.11	1
破壊	0.44	0.23	0.33	1
平均列比率	0.56	0.15	0.29	1

列比率として要素計算したものが、 列プロファイル。 行和の列は、平均列プロファイルとなる。

*元表を転置して配置していある

行と列関係:対応関係

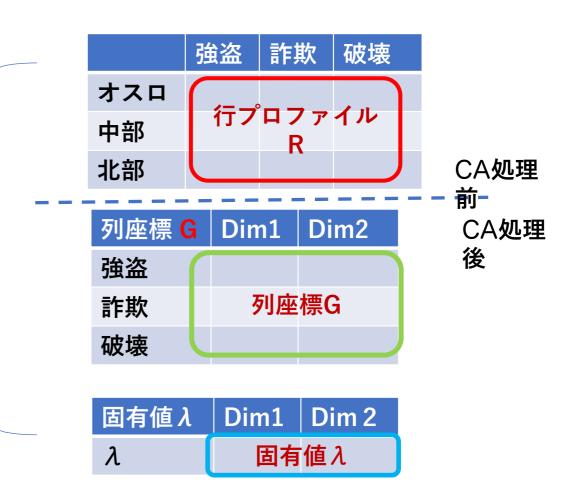
- ・行の各ポイントは、列のすべてのポイントに関連している。
- 列の各ポイントは、行のすべてのポイントに関連している。

・行と列の「対称性」。これを実現しているのが、点間距離をカイ2乗距離で定義していること。

遷移公式: Transition Formula

行座標 F	Dim1	Dim2
オスロ		
中部		
北部		

 $f_{ik} = \frac{1}{\sqrt{\lambda_k}} \sum_{j} \left(\frac{p_{ij}}{r_i}\right) g_{ik}$

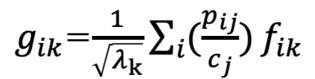


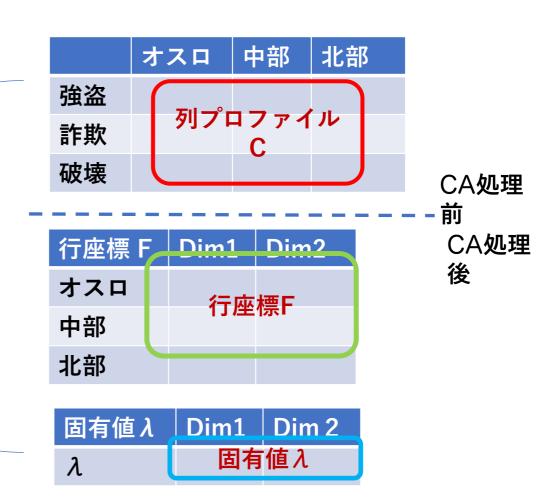
*Greenacre1984:64 **

Greenacre2017=2020:108

遷移公式: Transition Formula

列座標 G	Dim1	Dim2
強盗		
詐欺		
破壊		





行列の演算形式:遷移公式

3行

3行

3列

行プロファイル R 3行3列 2列

列座標 G 3 行 2 列 対角行列 2 x 2

行座標 F 3 行 2 列

行も列も 形式は同じ

3列

列プロファイル C 3行3列 2列

行座標 F 3 行 2 列 対角行列 2 x 2

列座標 G 3 行 2 列

追加変数を計算できる仕組み

追加変数/カテゴリ/個体

- ・空間生成に関係するポイント
 - Active変数
- ・CAの時はあまり問題にならないが、MCAでは次のことが問題になる。
 - ・関連のない(まざると解釈不能になるカテゴリ)も、SVDを行えば数 学的には何らかの座標を獲得できる。
 - ・しかし、解釈不能….
- ・そこで、空間生成には、同質(まざっても解釈可能という意味)なカテゴリを用いる。Active変数
- ・しかし、その連関はなくても、関連を見たい変数はある。
 - 年齢、性別、年収…..

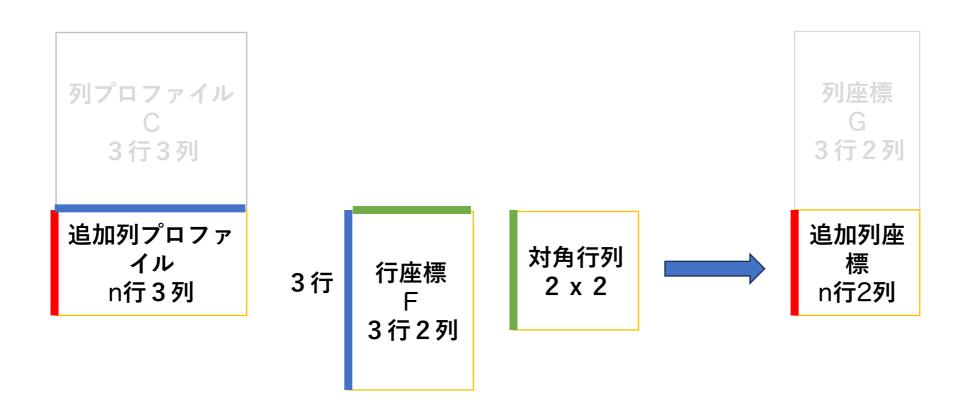
追加変数の射影というアイデア

- ・空間成績を行う変数の選択
 - Active変数
- これで生成される二つの空間の構造を、例えば性別、年代、もしくはその合成変数で分析したいときには、それら(性別など)を追加変数(サプリメンタリ変数)として、射影する。
- ・射影するには、座標が取得される必要がある。
- ・この空間生成には寄与しないが、座標を取得できる方法を、 「追加変数」として得る。

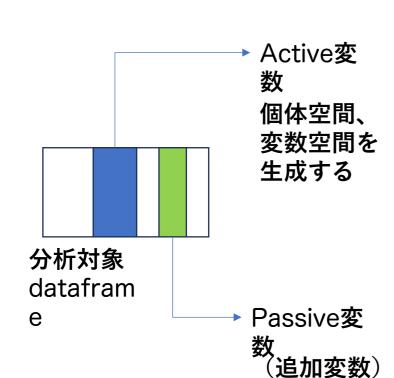
追加変数の座標が計算できるしくみ

行列の掛け算では、右行列の列数と左行列の行数が同じであれば、計算可能。 つまり、列プロファイルに追加列プロファイルを加えると、列座標と固有値の 対角行列をかけて、追加行座標が得られることになる。 ここで、この追加列は、空間にはなんら影響を与えていない。

実際の計算では、追加変数分だけでよい



Active変数と追加変数の関係



指示行列化(index 円和r^(x)列和 C 標準化残差行列 junkカテゴリ指定 特異値分解 SVD

 $\begin{array}{c} \Phi = D_r^{-1/2} U \\ D_{\alpha} V^t & \Gamma = D_c^{-1/2} V \\ F = D_r^{-1/2} U D_{\alpha} = \Phi D_{\alpha} \\ G = D_c^{-1/2} V D_{\alpha} = \Gamma D_{\alpha} \end{array}$

指示行列化(index matrix)

matrix) 転置して行和を求め、行比率行列 (プロファイル)化(C_{sup})

Passive変数の座標 $G_{sup} = C_{sup} F D_{\lambda}^{-1/2}$

Active変数の列座標とPasssive変数(追加 変数)の列座標(ともに主座標)で散布図を描く。

CA & MCA

CA & MCA

- ・CAは2変数、クロス集計表を入力とし、MCAは行が個体、列 が変数の表(集計表)を入力する。
- ・しかし、functionの内部では、変数は回答カテゴリに分解されて、0/1でコーディングされたindicator(指示)行列に展開されて、その表に対してCAが行われている。
 - ・もう一つのMCAはburt行列という2変数ごと総当たりクロス表に対するCA。今回は、指示行列版MCAしか使いません。『対応分析の理論と実践』第18章
- ・この指示行列には厳しい制約がある。
 - ・0/1で表示されるけれども、MA回答のような0/1展開ではない。

指示行列の重要性

- ・変数内は、複数のカテゴリに分割されている。
 - その中に1が立つものが必ず1つあること。
 - ・つまり、行和は、変数総数になる。
 - これがMA回答の0/1とは異なる部分。
- ・ではMA回答はどうコーディングするのか。
 - その変数内の回答を合計すると1になるように配分する。
 - ・選択肢が10個あって、3つ選ばれていたら、一つには1/3を配分。
 - 「いくつまで」「いくつでも」「いくつ」によって、コーディング方 法がかわるので、やっかい。
 - ・「参考資料」の「MAコーディングの問題」参照。

この指示行列ルールがGDAでは重要

- ・平方和の分解で、
 - 全分散=群間分散+郡内分散 が成り立つ前提。
- ・MCAをやっていて実践的に直面する、ジャンクカテゴリの処理 に関係する。
 - speMCA カテゴリ選択MCA
 - CSA 個体選択MCA

ともに、全体の行和、列和は維持しており、全体のMCAとの比較を可能にする。(GDAのところで説明します。)